11 Holomorphy

11.1 Non-renormalization of the superpotential

Couplings in the superpotential can be regarded as background fields. If we
integrate out physics above a scale p (i.e. calculate the Wilsonian effective
action) then the effective superpotential must be a holomorphic function
of the couplings. Consider a theory renormalized at some scale A with a

superpotential:
A
Witee = @qbz + *¢3- (111)
2 3
Recall that since the R charge doesn’t commute with the SUSY generator:
[R,Qa] = —Qa, (11.2)
we have R[¢] = R[¢] — 1, R[f] = 1. Since
L D Aoy (11.3)
must have zero R charge, so
3R[¢]—2=0 (11.4)

So R[W] = 2. Alternatively we could get the same result by noting:
Ling = /d29W (11.5)

Chiral supermultiplets are labeled by the R charge of the scalar compo-
nent.

¢ 1 1
A 0 (11.6)
A -3 ~1

Non-zero values for m and A explicitly break both U(1) symmetries, but
they still lead to selection rules.

The symmetries and holomorphy of the effective superpotential restrict
it to be of the form

Weg = f((bvva) (117)
me?h (iff) (11.8)
— Zan)\nml—n¢n+2 (119)



The limit A — 0 restricts n > 0, and the m — 0 restricts n < 1 so

m
West = 5@62 + 90° = Wiree (11.10)

i.e. the superpotential is not renormalized.
11.2 Wavefunction Renormalization

L= Z08,¢" 0" +iZpa 0, (11.11)
where
Z = Z(m,A\,m", AT, i, A) (11.12)

If we integrate out modes down to p > m we have

A2
Z=1+c\\n <2> (11.13)
I
If we integrate out modes down to scales below m we have
A2
Z =14 c\\ ln< ) (11.14)
mm/t

So there is wavefunction renormalization, and the couplings of canonically
normalized fields run. In our example the running couplings are

m A
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11.3 Integrating Out
Lo A 2
W= §M¢H + §¢H¢ (11.16)
This model has three global U(1) symmetries:
UMa UM)p Ur
¢n 1 0 1
) 0 1 3 (11.17)
M -2 0
A -1 -2 0



If we want to integrate out down to p < M, we can integrate out ¢r. The
an term in the effective superpotential has the form

¢ MENP (11.18)
To preserve the symmetries we must have j = 4, p = 2, and k = —1. By
comparing with perturbation theory we find:
AQ ¢4
Weg = — 11.19
eff M ( )
We could also derive this exact result using the algebraic equation of motion
ow (11.20)
H

Another interesting example is
1 A
W= SM} + Sond” + %qﬁﬁ’q (11.21)

Integrating out ¢g yields

m3 3y > Ayo? Ay¢?
S . 1— 1 11.22
Wer = 52 ( oM T M2 M2 (11.22)

The singularities in Weg indicate points where ¢ becomes massless and we
shouldn’t have integrated it out.
11.4 The Holomorphic Gauge Coupling

Using y* = z* — i6o"6 we can write a the gauge multiplet as a chiral
superfield

WE = —iNa(y) + 0aD"(y) — (0" 0)aF L (y) — (00)0" DA () (11.23)

Using
0 47i
r= M T (11.24)
2 g2
we can write the SUSY Yang-Mills Lagrangian as a superpotential term
1
— / 'z / 20 TWAWE + h.c. (11.25)
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where
~ 1
Fg, = §eumﬁFgﬁ (11.26)

Note ¢ only appears as a holomorphic parameter, but the gauge fields are
not canonically normalized. Recall that the F%"F 1w term calculates the
topological winding number of instanton gauge configurations, though it
has no effect in pertubations theory. One instanton effects are suppressed
by

e it = ¢ ¢ (11.27)
Recall
dg bg®
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'ud,u 1672 (11.28)
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g} p) 87 \p (11.29)

If we integrate down to u

7(A; 1)
Weg = Waewe 11.
ft 16w ¢ ¢ (11.30)

Since
Ovm — Oym + 27 (11.31)

is a symmetry

(5 (2) )

So the holomorphic gauge coupling only receives one-loop corrections and
non-perturbative corrections.
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